Advanced Mechatronic System Design

Background of the workshop

Idea:

- Provide intensive training in mechatronic system design on a new and uncertain business case based on vague requirements (close to reality!)
- Interactive participation in workshop/masterclass environment.
- Related to the Dutch high-tech industry
- Provided by experienced system designers
- On top of the Mechatronics courses of Mechatronics Academy
- Covering a broad range of subjects
- With adaptable content, when required

System Decomposition Overview

Vibration transmission and bearing issues prohibit its use in a scanner.

Contents

- Mechatronics Training Curriculum
- Details of Course Advanced Mechatronic System Design

Mechatronics Training Curriculum

<u>Relevant partner trainings:</u> Applied Optics, Electronics for nonelectrical engineers, System Architecture, Soft skills for technology professionals,

. . .

www.mechatronics-academy.nl

Mechatronics Academy

- In the past, many trainings were developed within Philips to train own staff, but the training center CTT stopped.
- Mechatronics Academy B.V. has been setup to provide continuity of the existing trainings and develop new trainings in the field of precision mechatronics. It is founded and run by:
 - Prof. Maarten Steinbuch
 - Prof. Jan van Eijk
 - Dr. Adrian Rankers
- We cooperate in the **High Tech Institute** consortium that provides sales, marketing and back office functions.

Advanced Mechatronic System Design

Course Director(s) / Trainers

Teachers

- Prof.ir. Rob Munnig Schmidt (TUDelft / RMS Acoustics & Mechatronics)
- Ir. Ad Vermeer (AdInsyde)
- Dr.ir. Adrian Rankers (Mechatronics Academy)
- Ir. Hans v.d. Rijdt (van de Rijdt Innovatie)
- Rob Oldenburg (Sales Improvement Group)

Course Director(s)

- Prof.dr.ir. Jan van Eijk (MiceBV)
- Dr.ir A.M. Rankers (Mechatronics Academy)

Program

Day	Session	Time	Торіс	Presenter
Day 1	Morning	09.00 09.30 11.30	Introduction (who-is-who, goals, expectations,) Introduction Case Team Work (discussion of assignment, understanding, clarifying,)	Rob Rob/Ad
	Afternoon	13.30 15.30	Optical Systems for Imaging (focus on case) System Decomposition Overview (SDO) incl. weekend assignment	Rob Ad
Day 2	Morning	09.00 10.30 11.30	Team discussion (understanding/Questions URS, Initial Concept(s) + SDO Plenary discussion Agile Systems Engineering Principles incl. (agile)(V-model , (agile) requirements, decomposition,	Ad
	Afternoon	13.30 15.00 16.30	Team Exercise Agile Systems Engineering incl. preparation of initial customer feedback presentation (draft of requirements, deliverables,) to "test" whether you are in sync with the customer 3 x (10min presentation+20min discussion on contents & presentation) Is your audience yellow, blue, green or red ?	Ad Rob/Ad + Rob Oldenburg Rob Oldenburg
Day 3	Morning	09.00 10.00	Layout & Motion Concepts Team Work	Rob
	Afternoon	13.30 15.00	Risk Assessment Team Work	Ad
	Evening*	18.00	Dinner (Auberge Nassau)	
Day 4	Morning	09.00 10.30	Design for (Service) Costs Team Work	Hans v.d. Rijdt
	Afternoon	13.30 15.30	Precision Drive & Sensing Principles Team Work	Rob
Day 5	Morning	09.00 12.00	Vibrations & Dyn. Error Budgetting Decision Tables	Adrian Ad
	Afternoon	13.30 15.00	Conceptual Thermal Analysis (30% accuracy calculations) Team Work	Ad
Day 6	Morning	09.00 10.00	Example presentation of a real project Preparation Customer Meeting	Rob
	Afternoon	13.30 16.00	3x Customer Presentation (20min + 20min discussion) Evaluation incl. most important lessons learned & improvement points	Rob/ Ad / Guest

Day 1 (morning): Introduction / Case

Background of the workshop

Idea:

- Provide intensive training in mechatronic system design on a new and uncertain business case based on vague requirements (close to reality!)
- Interactive participation in workshop/masterclass environment.
- Related to the Dutch high-tech industry
- Provided by experienced system designers
- On top of the Mechatronics courses of Mechatronics Academy
- Covering a broad range of subjects
- With adaptable content, when required

Top down approach

The participant will be confronted with aspects on different levels:

- The product creation process including creativity and innovation-targeted process steps based on vague "customer requirements"
- The fact that the customer is in fact multiple persons with often different views
- Technical trade-offs on system level by teams of which the members have a different technical background.
- Recent insights/developments on module/function level.

So what will be the task in this workshop?

- Concept design of a flexible LCD/OLED pattern definition system, focusing on the huge diversity in <u>small</u>, high resolution displays used in smartphones and related products by breaking with the trend for ever larger substrates, preferably on a single item basis.
- Starting with a thorough investigation of requirements and working according to a systematic design process.

Day 1 (afternoon): Optical Systems ...

Main message

- 1. The wavelength and radiance of a source of light determine the ability of a lithographic exposure system to concentrate light on a small spot.
- 2. A wavefront is an artificial concept that is used in visualising optical properties.
- 3. Geometric optics is a straightforward way to construct an image by means of ray-tracing.
- 4. Telecentricity is applied in technical optics to avoid magnification errors.
- 5. Pixel-grid imaging differs from normal imaging in the way how a total image is created.

A narrow aperture stop in an afocal lens makes it telecentric

System Decomposition Overview

Day 2 (morning):

Day 2 (afternoon): Case + Presentation

Some Technical Presentation Tips and Tricks

Day 3 (morning): Layout Concepts

Breakdown of motion system requirements and constraints

- Imaging:
 - Guarantee vibration free environment of exposure system
 - 6 DOF Position measurement of wafer relative to lens
- Overlay:
 - Same requirements as with imaging plus:
 - Position calibration of image to wafer (alignment)
- Throughput:
 - Avoid waiting times, keep lens always active imaging
 - Accurate positioning at high speed

1:1 projection Perkin-Elmer (SVG-ASML) Micralign (1973)

Disruptive, paradigm shifting technology of a waferstepper (Philips 1971)

- Smaller exposure area
- Alignment per die possible
- High NA only at imaging side
- Mask manufacturing less critical
- No contact

Light source+ light shaping

Wafer on wafer stage

Step 3: Electrical version of H-drive

3 DOF active controlled, 3 DOF passive guided, but......

Vibration transmission and bearing issues prohibit its use in a scanner.

Dynamic architecture Twinscan

Day 3 (afternoon): Risk Assessment

Identifying risks early in project

- · Finding risks is a creative process
- Structured creativity by Fish Bone diagram
- Follow Ground Rules for Creativity:
 - Quantity above Quality
 - Cross Stimulation
 - Suspended Judgment
 - Writing it down
 - Listening
- Suggestion: Start with "brainwriting"

Practical method: Failure Mode and Effect Analysis

Assignment (2): Use FMEA

- Start from System Decomposition Overview
- · Follow FMEA workflow on concept level
- Use FMEA Template
- · Fill in main risks found with fish bone diagram
- Define Mitigation Strategy
 - Analysis of critical performance aspects
 - Plan B for critical elements
 - Test rigs, fast prototyping in project plan

Day 4 (morning): Design for Service

Content

- · Philips Digital Pathology
- · Some explanation on UFS
- Stage
- Optics
- · Glass handling
- Service strategy
 - •Assignment 1
 - •Assignment 2

• 300 slides in scanner store · Handler checks slides presence

> · identification of the label • Tissue position detection

· Scan high resolution with continuous

·Check on scan quality · Image to the server

· 2 Snapshot images:

Slide towards stage

Advanced Mechatronic System Design - overview

Component (50 Euro)

Total spare part value 20 K-Euro Waste

Component (50 Euro)

Component (100 Euro)

Day 4 (afternoon): Precision Drives .

Main message

- 1. The choice of the driving actuator depends on the disturbance sources in the application.
- 2. Actuators convert control action into real action. The amplifier is an inseparable part of the actuator.
- 3. Sensors convert physical "signals" into electrical signals. Electronics are key in this process.
- Actuators in an active controlled motion system are characterised by one or more "nested" internal feedback loops with their impact on system dynamics and motion feedback stability.

Actuator possibilities

Different drive principles exist :

- Piezoelectric
- Electromagnetic
 - Lorentz
 - Variable reluctance
 - Hybrid (biased reluctance)
- Pneumatic
- Electrostatic

mechatronics academy brainport

Day 5 (morning): Vibrations & Dyn. Error

Day 5 (afternoon): Thermal Analysis

DSPE Website on Thermomechanics

- Chapter 1: Basics of Thermomechanics 1.1 Temperature, heat and heat capacity 1.2 Heat transfer 1.3 Principles of thermal deformations 1.4 Thermo-mechanical beam equations ("vergeet-mij-nietjes")
- Chapter 2: In Depth 2.1 Conduction in solids 2.2 Conduction in gasses 2.3 Thermal convection 2.4 Thermal radiation
- Chapter 3: Thermomechanical design 3.1 Material selection 3.2 Geometry 3.3 Design principles 3.4 Passive thermal conditioning 3.5 Active thermal conditioning 3.6 Compensation 3.7 Summary
- Chapter 4: Thermomechanical Modeling 4.1 Important variables 4.2 Lumped capacitance modeling 4.3 Advanced hand calculations 4.4 Numerical modeling Chapter 5: Sensors 5.1 Contactless temperature sensors 5.2 Contact temperature sensors 5.3 Heat flux sensors
- Chapter 6: Measurement 6.1 Calibration 6.2 Practical information
- Chapter 7: Examples
- Chapter 8: Miscellaneous

Thermal "vergeet-me-nietjes", DSPE website

Beam equations under thermal load	Thermal load case A: $\Delta T(x, y, z) = \Delta \hat{T}$	Thermal load case B: $\Delta T(x, y, z) = \Delta \hat{T} \frac{x}{L}$	Thermal load case C: $\Delta T(x, y, z) = \Delta \hat{T} \frac{y}{H}$		
Beam type ⁽¹⁾	Equations ($w(x) = 0$)	Equations $(w(x) = 0)$	Deformed shape and stress field ⁽²⁾	Equations $(u(x) = 0)$	
	$u(x) = \alpha \Delta \hat{T} x$	$u(x) = \frac{\alpha \Delta \hat{T} x^2}{2} \frac{L}{L}$		$w(x) = -\frac{\alpha}{2H} \Delta \hat{T} x^2$	$w_{max} = \frac{\alpha L^2}{2H} \Delta \hat{T}$
3+	$\sigma_{xx}(x,y,z)=0$	$\sigma_{xx}(x,y,z)=0$		$\sigma_{xx}(x,y,z)=0$	$\sigma_{xx,max} = 0$
× K	u(x) = 0	$u(x) = \frac{\alpha \Delta \hat{T}}{2} \left(\frac{x^2}{L} - x \right)$		w(x) = 0	<i>w_{max}</i> = 0
	$\sigma_{xx}(x, y, z) = -\alpha E \Delta \hat{T}^{(0)}$	$\sigma_{xx}(x,y,z) = -\frac{\alpha E\Delta \hat{T}}{2} \circledast $		$\sigma_{xx}(x, y, z) = -\frac{\alpha E \Delta \hat{T}}{H} y$	$\sigma_{xx,\ max} = \frac{\alpha E \Delta \hat{T}}{2}$
1	$u(x) = \alpha \Delta \hat{T} x$	$u(x) = \frac{\alpha \Delta \hat{T} x^2}{2L}$		$w(x) = -\frac{\alpha}{2H} \Delta \hat{T} \left(\frac{x^3}{2L} - \frac{x^2}{2} \right)$	$w_{max} = \frac{\alpha L^2}{27H} \Delta \hat{T}$
L	$\sigma_{xx}(x,y,z)=0$	$\sigma_{xx}(x,y,z)=0$		$\sigma_{xx}(x,y,z) = \frac{\alpha E \Delta \hat{T} y}{2 H} \left(3 \frac{x}{L} - 3 \right)$	$\sigma_{xx,max} = \frac{3\alpha E \Delta \hat{T}}{4}$
1 ³	u(x) = 0	$u(x) = \frac{\alpha \Delta \hat{T}}{2} \left(\frac{x^2}{L} - x \right)$		$w(x) = -\frac{\alpha}{2H} \Delta \hat{T} \left(\frac{x^3}{2L} - \frac{x^2}{2} \right)$	$w_{max} = \frac{\alpha L^2}{27H} \Delta \hat{T}$
L	$\sigma_{xx}(x,y,z) = -\alpha E \Delta \hat{T} \bar{\textcircled{D}}$	$\sigma_{xx}(x,y,z)=-\frac{\alpha E\Delta\hat{T}}{2}@$		$\sigma_{xx}(x,y,z) = \frac{\alpha E \Delta \hat{T} y}{2 H} \left(3 \frac{x}{L} - 3 \right)$	$\sigma_{xx,max} = \frac{3\alpha E \Delta \hat{T}}{4}$
1 ^y	$u(x) = \alpha \Delta \hat{T} x$	$u(x) = \frac{\alpha \Delta \hat{T} x^2}{2} \frac{L}{L}$		$w(x) = -\frac{\alpha}{2H} \Delta \hat{T} (x^2 - Lx)$	$w_{max} = \frac{\alpha L^2}{8H} \Delta \hat{T}$
The fo	$\sigma_{xx}(x,y,z)=0$	$\sigma_{xx}(x,y,z)=0$		$\sigma_{xx}(x,y,z)=0$	$\sigma_{xx,max} = 0$
↑ ^y	u(x) = 0	$u(x) = \frac{\alpha \Delta \hat{T}}{2} \left(\frac{x^2}{L} - x \right)$		$w(x) = -\frac{\alpha}{2H} \Delta \hat{T} (x^2 - Lx)$	$w_{max} = \frac{\alpha L^2}{8H} \Delta \hat{T}$
The the	$\sigma_{xx}(x,y,z) = -\alpha E \Delta \hat{T} \textcircled{0}$	$\sigma_{xx}(x,y,z) = -\frac{\alpha E\Delta \hat{T}}{2} \circledast$		$\sigma_{xx}(x,y,z)=0$	$\sigma_{xx,max} = 0$

Summary heat transfer (DSPE website)

<u>Heat</u> transfer method	Thermal conductance [W/K]	Heat transfer coefficient [W/(m ² K)]	Condition
Conduction	TC = (k A) / L	h = k / L	unidirectional conduction (over length L, cross- section A)
Convection	TC = A h _c	h = h _{conv}	Typical value for laminar water flow: hconv= 1000[W/(m ² K)]
Radiation	$TC = \frac{\varepsilon_1 A_1 F_{12} \varepsilon_2}{1 - F_{12}^2 \frac{A_1}{A_2} (1 - \varepsilon_1) (1 - \varepsilon_2)} 4 \sigma T_{nom}^3$	h1 = TC / A ₁ h2 = TC / A ₂	Linearized: Valid for smal deviations from nominal temperature T _{nom}
Contacting surfaces	 "dry" contact: TC = A h_{contact} gap material: TX = A k_{fill} / d (gap height d, filler conductivity k_{fill}) 	h = h _{contact}	Typical value for dry contact at moderate pressure: h _{contact} = 100 - 1000[W/(m ² K)]

Heat transfer through blocks due to convection outside Aluminium: $\lambda = 210 \text{ [W/m*K]}$ Thickness each (top and bottom) plate d = 0.04 [m] Area top /bottom side A = 0.2* 0.2 = 0.04 [m²] Heat flux natural convection $\Phi = 5 \text{ [W/m²K]} * \text{ delta T * A} = 5*200*0.04 = 40 [W]$ Temperature difference between top and bottom of both plates in steady state: $\Delta T = (\Phi^*d) / (A^* \lambda) = (40 * 0.04) / (0.04 * 210) = 0.19 [K]$

Uniform and non-uniform expansion

Day 6 (morning): Real Life Example

Day 6 (afternoon): Customer Presentation

Customer Presentation of each team

- Technical concept(s)
- Plan how to proceed
- Convincing the customer

Evaluations / Lessons Learned

Via the website of our partner High Tech Institute

